这是一个很棒的可视化 python 库,用于与 Keras 一起工作。它使用 python 的 graphviz 库来创建您正在构建的神经网络的可呈现图。
ann_visualizer 2.0 版现已发布!社区需要 CNN 可视化工具,因此我们更新了模块。您可以查看下面的 CNN 可视化示例!
[hidecontent type="logged" desc="隐藏内容:登录后可查看"]
ann_visualizer
从 github 存储库下载文件夹。ann_visualizer
文件夹放在与主 python 脚本相同的目录中。使用以下命令:
pip3 install ann_visualizer
确保你已经安装了 graphviz。安装使用:
sudo apt-get install graphviz && pip3 install graphviz
from ann_visualizer.visualize import ann_viz;
#Build your model here
ann_viz(model)
model
- Keras 顺序模型view
- 如果为真,则在执行后打开图形预览filename
- 在哪里保存图形。(.gv 文件格式)title
- 图表的标题import keras;
from keras.models import Sequential;
from keras.layers import Dense;
network = Sequential();
#Hidden Layer#1
network.add(Dense(units=6,
activation='relu',
kernel_initializer='uniform',
input_dim=11));
#Hidden Layer#2
network.add(Dense(units=6,
activation='relu',
kernel_initializer='uniform'));
#Exit Layer
network.add(Dense(units=1,
activation='sigmoid',
kernel_initializer='uniform'));
from ann_visualizer.visualize import ann_viz;
ann_viz(network, title="");
这将输出:
import keras;
from keras.models import Sequential;
from keras.layers import Dense;
from ann_visualizer.visualize import ann_viz
model = build_cnn_model()
ann_viz(model, title="")
def build_cnn_model():
model = keras.models.Sequential()
model.add(
Conv2D(
32, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(Dropout(0.2))
model.add(
Conv2D(
32, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(
Conv2D(
64, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(Dropout(0.2))
model.add(
Conv2D(
64, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(10, activation="softmax"))
return model
[/hidecontent]